\checkmark Entropy

Entropy is defined as the average number of bits needed for storage or communication. In other words, it is the sum of the expected values of self-information in the communication system and has the symbol "H". Entropy calculated according to the following formula:

$$
\mathrm{H}(\mathrm{Xi})=\sum_{i=1}^{n} \mathrm{P}(\mathrm{xi}) * \mathrm{I}(\mathrm{Xi})
$$

Example 1: Find the amount of entropy for two events which have the following Probabilities: first event $\mathrm{P}=1 / 4$, the second event $\mathrm{P}=3 / 4$.

$$
\begin{aligned}
\mathrm{H} & =\sum_{i=0}^{n} \mathrm{P}(\mathrm{xi}) * \log 2(1 / \mathrm{P}(\mathrm{xi})) \\
& =0.25 * \log _{2}(4)+0.75 * \log _{2}(4 / 3) \\
& =0.25 * 3.322 * \log _{10}(4)+0.75 * 3.322 * \log _{10}(4 / 3) \\
& =0.25 * 3.322 * 0.602+0.75 * 3.322 * 0.125 \\
& =0.5+0.311 \\
& =0.811 \text { Bits }
\end{aligned}
$$

Example 2: Suppose that we have a horse race with eight horses. The probabilities of winning for the eight horses are $\left(\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \frac{1}{64}, \frac{1}{64}, \frac{1}{64}, \frac{1}{64}\right)$. We can calculate the entropy of the horse race as:

$$
\begin{aligned}
\mathrm{H}(\mathrm{X})= & 1 / 2 \log _{2}(2)+1 / 4 \log _{2}(4)+1 / 8 \log _{2}(8)+1 / 16 \log _{2}(16)+4 *\left(1 / 64 \log _{2}(64)\right) \\
= & 1 / 2 * 3.322 * \log _{10}(2)+1 / 4 * 3.322 * \log _{10}(4)+1 / 8 * 3.322 * \log _{10}(8) \\
& +1 / 16 * 3.322 * \log _{10}(16)+4 *\left(1 / 64 * 3.322 * \log _{10}(64)\right) \\
= & 2 \mathrm{bits}
\end{aligned}
$$

Example3: Let A with P (1/2), B with P (1/4), C with P (1/8) and D with P (1/8). Find the entropy of X .

$$
\begin{aligned}
\mathrm{H}(\mathrm{X}) & =1 / 2 * 3.322 * \log _{10}(2)+1 / 4 * 3.322 * \log _{10}(4)+2 *\left(1 / 8 * 3.322 * \log _{10}(8)\right) \\
& =1.75 \mathrm{bits}
\end{aligned}
$$

Information Theory

\checkmark Joint entropy

The joint entropy of two discrete random variables X and Y is merely the entropy of their pairing (X, Y). This implies if X and Y are independent, then their joint entropy is the sum of their individual entropies.
For example, if (X, Y) represents the position of a chess piece. X represents the row and Y the column, then the joint entropy of the row of the piece and the column of the piece will be the entropy of the position of the piece.

$$
H(X, Y)=\sum_{X} \sum_{Y} P(x, y) \log \left(\frac{1}{p(x, y)}\right) \quad \text { unit of information }
$$

OR

$$
\mathrm{H}(\mathrm{X}, \mathrm{Y})=\mathrm{H}(\mathrm{X})+\mathrm{H}(\mathrm{Y}) \quad \text { unit of information }
$$

Example1: Find the joint entropy for tossing a coin X and rolling a dice Y .
Note: The chance of getting " tail " or " head " is equal, as well, the chance of getting
" 1 ", " 2 ", " 3 ", " 4 ", " 5 " and " 6 " is equal.

$$
\mathrm{P}\left(\mathrm{x}_{=\text {Head }}\right)=\mathrm{P}(\mathrm{x}=\text { Tail })=1 / 2
$$

$$
\mathrm{P}(\mathrm{y}=1)=\mathrm{P}(\mathrm{Y}=2)=\mathrm{P}(\mathrm{Y}=3)=\mathrm{P}(\mathrm{Y}=4)=\mathrm{P}(\mathrm{Y}=5)=\mathrm{P}(\mathrm{Y}=6)=1 / 6
$$

$$
\mathrm{P}(\mathrm{x}, \mathrm{y})=\mathrm{P}(\mathrm{x}) * \mathrm{P}(\mathrm{y})=1 / 2 * 1 / 6=1 / 12
$$

$$
\mathrm{H}(\mathrm{x}, \mathrm{y})=\sum_{i=1}^{2} \sum_{j=1}^{6} \quad \mathrm{P}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{j}}\right) \log _{2}\left(1 / \mathrm{P}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{j}}\right)\right)
$$

$$
=2 *\left(6 *\left(1 / 12 * 3.322 * \log _{10}(12)\right)\right)
$$

$$
=12 *(0.083 * 3.322 * 1.079)
$$

$$
=3.584 \text { bits }
$$

OR

$$
\begin{aligned}
\mathrm{H}(\mathrm{x}) & =\sum_{i=1}^{2} \quad \mathrm{P}\left(\mathrm{x}_{\mathrm{i}}\right) \log _{2}\left(1 / \mathrm{P}\left(\mathrm{x}_{\mathrm{i}}\right)\right) \\
& =2 *\left(1 / 2 * 3.322 * \log _{10}(2)\right) \\
& =2 *(0.5 * 3.322 * 0.301) \\
& =1 \text { bits } \\
\mathrm{H}(\mathrm{y}) & =\sum_{j=1}^{6} \quad \mathrm{P}\left(\mathrm{y}_{\mathrm{j}}\right) \log _{2}\left(1 / \mathrm{P}\left(\mathrm{y}_{\mathrm{j}}\right)\right) \\
& =6 *\left(1 / 6 * 3.322 * \log _{10}(6)\right) \\
& =6 *(0.167 * 3.322 * 0.778) \\
& =2.585 \text { bits } \\
\mathrm{H}(\mathrm{x}, \mathrm{y}) & =\mathrm{H}(\mathrm{x})+\mathrm{H}(\mathrm{y}) \\
& =1+2.585 \\
& =3.585 \text { bits }
\end{aligned}
$$

